Wednesday, 14 June 2017

Peptide kháng U937

Antitumor activity of antimicrobial peptides against U937 histiocytic cell ...

Peptide kháng U937

From Wikipedia, the free encyclopedia

A tetrapeptide (example Val-Gly-Ser-Ala) with green marked amino end (L-Valine) and
blue marked carboxyl end (L-Alanine).
Peptides (from Gr.: πεπτός, peptós "digested"; derived from πέσσειν, péssein "to digest") are biologically occurring short chains of amino acid monomers linked by peptide (amide) bonds.
The covalent chemical bonds are formed when the carboxyl group of one amino acid reacts with the amine group of another. The shortest peptides are dipeptides, consisting of 2 amino acids joined by a single peptide bond, followed by tripeptidestetrapeptides, etc. A polypeptide is a long, continuous, and unbranched peptide chain. Hence, peptides fall under the broad chemical classes of biological oligomers and polymers, alongside nucleic acidsoligosaccharides and polysaccharides, etc.
Peptides are distinguished from proteins on the basis of size, and as an arbitrary benchmark can be understood to contain approximately 50 or fewer amino acids.[1][2] Proteins consist of one or more polypeptides arranged in a biologically functional way, often bound to ligands such as coenzymes and cofactors, or to another protein or other macromolecule (DNARNA, etc.), or to complex macromolecular assemblies.[3] Finally, while aspects of the lab techniques applied to peptides versus polypeptides and proteins differ (e.g., the specifics of electrophoresischromatography, etc.), the size boundaries that distinguish peptides from polypeptides and proteins are not absolute: long peptides such as amyloid beta have been referred to as proteins, and smaller proteins like insulin have been considered peptides.
Amino acids that have been incorporated into peptides are termed "residues" due to the release of either a hydrogen ion from the amine end or a hydroxyl ion from the carboxyl end, or both, as a water molecule is released during formation of each amide bond.[4] All peptides except cyclic peptides have an N-terminal and C-terminalresidue at the end of the peptide (as shown for the tetrapeptide in the image).

Peptide classes[edit]

Peptides are divided into several classes, depending on how they are produced:
Milk peptides 
Two naturally occurring milk peptides are formed from the milk protein casein when digestive enzymes break this down; they can also arise from the proteinasesformed by lactobacilli during the fermentation of milk.[5]
Ribosomal peptides 
Ribosomal peptides are synthesized by translation of mRNA. They are often subjected to proteolysis to generate the mature form. These function, typically in higher organisms, as hormones and signaling molecules. Some organisms produce peptides as antibiotics, such as microcins.[6] Since they are translated, the amino acidresidues involved are restricted to those utilized by the ribosome.
However, these peptides frequently have posttranslational modifications such as phosphorylationhydroxylationsulfonationpalmitoylation, glycosylation and disulfideformation. In general, they are linear, although lariat structures have been observed.[7] More exotic manipulations do occur, such as racemization of L-amino acids to D-amino acids in platypus venom.[8]
Nonribosomal peptides 
Nonribosomal peptides are assembled by enzymes that are specific to each peptide, rather than by the ribosome. The most common non-ribosomal peptide is glutathione, which is a component of the antioxidant defenses of most aerobic organisms.[9] Other nonribosomal peptides are most common in unicellular organismsplants, and fungi and are synthesized by modular enzyme complexes called nonribosomal peptide synthetases.[10]
These complexes are often laid out in a similar fashion, and they can contain many different modules to perform a diverse set of chemical manipulations on the developing product.[11] These peptides are often cyclic and can have highly complex cyclic structures, although linear nonribosomal peptides are also common. Since the system is closely related to the machinery for building fatty acids and polyketides, hybrid compounds are often found. The presence of oxazoles or thiazoles often indicates that the compound was synthesized in this fashion.[12]
Peptones
See also Tryptone
Peptones are derived from animal milk or meat digested by proteolysis.[13] In addition to containing small peptides, the resulting material includes fats, metals, salts, vitamins and many other biological compounds. Peptones are used in nutrient media for growing bacteria and fungi.[14]
Peptide fragments 
Peptide fragments refer to fragments of proteins that are used to identify or quantify the source protein.[15] Often these are the products of enzymatic degradation performed in the laboratory on a controlled sample, but can also be forensic or paleontological samples that have been degraded by natural effects.[16][17]

Peptide synthesis[edit]

Table of amino acids
Solid-phase peptide synthesis on a rink amide resin using Fmoc-α-amine-protected amino acid

Peptides in molecular biology[edit]

Peptides received prominence in molecular biology for several reasons. The first is that peptides allow the creation of peptide antibodies in animals without the need of purifying the protein of interest.[18] This involves synthesizing antigenic peptides of sections of the protein of interest. These will then be used to make antibodies in a rabbit or mouse against the protein.
Another reason is that peptides have become instrumental in mass spectrometry, allowing the identification of proteins of interest based on peptide masses and sequence.
Peptides have recently been used in the study of protein structure and function. For example, synthetic peptides can be used as probes to see where protein-peptide interactions occur- see the page on Protein tags.
Inhibitory peptides are also used in clinical research to examine the effects of peptides on the inhibition of cancer proteins and other diseases.[19] For example, one of the most promising application is through peptides that target LHRH.[20] These particular peptides act as an agonist, meaning that they bind to a cell in a way that regulates LHRH receptors. The process of inhibiting the cell receptors suggests that peptides could be beneficial in treating prostate cancer. However, additional investigations and experiments are required before the cancer-fighting attributes, exhibited by peptides, can be considered definitive.[21]

Well-known peptide families[edit]

The peptide families in this section are ribosomal peptides, usually with hormonal activity. All of these peptides are synthesized by cells as longer "propeptides" or "proproteins" and truncated prior to exiting the cell. They are released into the bloodstream where they perform their signaling functions.

Antimicrobial peptides[edit]

Tachykinin peptides[edit]

Vasoactive intestinal peptides[edit]

  • VIP (Vasoactive Intestinal Peptide; PHM27)
  • PACAP Pituitary Adenylate Cyclase Activating Peptide
  • Peptide PHI 27 (Peptide Histidine Isoleucine 27)
  • GHRH 1-24 (Growth Hormone Releasing Hormone 1-24)
  • Glucagon
  • Secretin

Pancreatic polypeptide-related peptides[edit]

  • NPY (NeuroPeptide Y)
  • PYY (Peptide YY)
  • APP (Avian Pancreatic Polypeptide)
  • PPY Pancreatic PolYpeptide

Opioid peptides[edit]

Calcitonin peptides[edit]

Other peptides[edit]

Notes on terminology[edit]

Length:
  • polypeptide is a single linear chain of many amino acids, held together by amide bonds.
  • protein consists of one or more polypeptides (more than about 50 amino acids long).
  • An oligopeptide consists of only a few amino acids (between two and twenty).

A tripeptide (example Val-Gly-Ala) with
green marked amino end (L-Valine) and
blue marked carboxyl end (L-Alanine)
Number of amino acids:
  • monopeptide has one amino acid.
  • dipeptide has two amino acids.
  • tripeptide has three amino acids.
  • tetrapeptide has four amino acids.
  • pentapeptide has five amino acids.
  • hexapeptide has six amino acids.
  • heptapeptide has seven amino acids.
  • An octapeptide has eight amino acids (e.g., angiotensin II).
  • nonapeptide has nine amino acids (e.g., oxytocin).
  • decapeptide has ten amino acids (e.g., gonadotropin-releasing hormone & angiotensin I).
  • An undecapeptide (or monodecapeptide) has eleven amino acids, a dodecapeptide (or didecapeptide) has twelve amino acids, a tridecapeptide has thirteen amino acids, and so forth.
  • An icosapeptide has twenty amino acids, a tricontapeptide has thirty amino acids, a tetracontapeptide has forty amino acids, and so forth.
Function:
  • neuropeptide is a peptide that is active in association with neural tissue.
  • lipopeptide is a peptide that has a lipid connected to it, and pepducins are lipopeptides that interact with GPCRs.
  • peptide hormone is a peptide that acts as a hormone.
  • proteose is a mixture of peptides produced by the hydrolysis of proteins. The term is somewhat archaic.

Doping in sports[edit]

The term peptide has been used to mean secretagogue peptides and peptide hormones in sports doping matters: secretagogue peptides are classified as Schedule 2 (S2) prohibited substances on the World Anti-Doping Agency (WADA) Prohibited List, and are therefore prohibited for use by professional athletes both in and out of competition. Such secretagogue peptides have been on the WADA prohibited substances list since at least 2008. The Australian Crime Commission cited the alleged misuse of secretagogue peptides in Australian sport including growth hormone releasing peptides CJC-1295GHRP-6, and GHSR (gene) hexarelin. There is ongoing controversy on the legality of using secretagogue peptides in sports.[26]

Curcumin kháng U937

Cytotoxicity of Curcumin against Leukemic Cell Lines via Apoptosis ...

Curcumin kháng U937

From Wikipedia, the free encyclopedia
Curcumin
Skeletal formula
Enol form
Skeletal formula
Keto form
Ball-and-stick model
Ball-and-stick model
Names
Pronunciation/ˈkɜːrkjᵿmɪn/
Preferred IUPAC name
(1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione
Other names
(1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione
Diferuloylmethane
Curcumin I
C.I. 75300
Natural Yellow 3
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
E numberE100 (colours)
PubChem CID
UNII
Properties
C21H20O6
Molar mass368.39 g·mol−1
AppearanceBright yellow-orange powder
Melting point183 °C (361 °F; 456 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 verify (what is Yes ?)
Infobox references
Curcumin is a bright yellow chemical produced by some plants. It is the principal curcuminoid of turmeric (Curcuma longa), a member of the ginger family (Zingiberaceae). It is sold as an herbal supplementcosmetics ingredient, food flavoring, and food coloring.[1] As a food additive, its E number is E100.[2]
It was first isolated in 1815 when Vogel and Pierre Joseph Pelletier reported the isolation of a "yellow coloring-matter" from the rhizomes of turmeric and named it curcumin.[3] Although curcumin has been used historically in Ayurvedic medicine,[4] its potential for medicinal properties remains unproven and is questionable as a therapy when used orally.[5][6][7]
Chemically, curcumin is a diarylheptanoid, belonging to the group of curcuminoids, which are natural phenols responsible for turmeric's yellow color. It is a tautomeric compound existing in enolic form in organic solvents and as a keto form in water.[8]

Applications[edit]

The most common applications are as a dietary supplement, in cosmetics, as a food coloring, and as flavoring for foods such as turmeric-flavored beverages (Japan).[1]

Curcumin
Annual sales of curcumin have increased since 2012, largely due to an increase in its popularity as a dietary supplement.[1] It is increasingly popular in skincare products that are marketed as containing natural ingredients or dyes, especially in Asia.[1] The largest market is in North America, where sales exceeded US$20 million in 2014.[1]

Chemistry[edit]

Curcumin incorporates several functional groups whose structure was first identified in 1910.[9] The aromatic ring systems, which are phenols, are connected by two α,β-unsaturated carbonyl groups. The diketones form stable enols and are readily deprotonated to form enolates; the α,β-unsaturated carbonyl group is a good Michael acceptor and undergoes nucleophilic addition.
Curcumin is used as a complexometric indicator for boron.[10] It reacts with boric acid to form a red-colored compound, rosocyanine.

Biosynthesis[edit]

The biosynthetic route of curcumin is uncertain. In 1973, Roughly and Whiting proposed two mechanisms for curcumin biosynthesis. The first mechanism involves a chain extension reaction by cinnamic acid and 5 malonyl-CoA molecules that eventually arylized into a curcuminoid. The second mechanism involves two cinnamate units coupled together by malonyl-CoA. Both use cinnamic acid as their starting point, which is derived from the amino acid phenylalanine.[11]
Plant biosyntheses starting with cinnamic acid is rare compared to the more common p-coumaric acid.[11] Only a few identified compounds, such as anigorufone and pinosylvin, build from cinnamic acid.[12][13]
Curcumin biosynthesis diagram
malonyl-CoA (5)
Biosynthetic pathway of curcumin in Curcuma longa.[11]

Research[edit]

In vitro, curcumin exhibits numerous interference properties which may lead to misinterpretation of results.[5][6]
Although curcumin has been assessed in numerous laboratory and clinical studies, it has no medical uses established by well-designed clinical research.[14] According to a 2017 review of over 120 studies, curcumin has not been successful in any clinical trial, leading the authors to conclude that "curcumin is an unstable, reactive, non-bioavailable compound and, therefore, a highly improbable lead".[5]
Cancer studies using curcumin conducted by Bharat Aggarwal, formerly a researcher at the MD Anderson Cancer Center, were deemed fraudulent and subsequently retracted by the publisher.[15]

Pharmacology[edit]

Curcumin, which shows positive results in most drug discovery assays, is regarded as a false lead that medicinal chemists include among "pan-assay interference compounds" attracting undue experimental attention while failing to advance as viable therapeutic or drug leads.[5][6][16] In vitro, curcumin inhibits certain epigeneticenzymes (the histone deacetylasesHDAC1HDAC3HDAC8), transcriptional co-activator proteins (the p300 histone acetyltransferase)[17][18][19] and the arachidonate 5-lipoxygenase enzyme.[20]
In Phase I clinical trials, curcumin had poor bioavailability, was rapidly metabolized, retained low levels in plasma and tissues, and was extensively and rapidly excreted, factors that make its in vivo bioactivity unlikely and difficult to accurately assess.[5][21] Curcumin appears to reduce circulating C-reactive protein in human subjects, although no dose-response relationship was established.[22] Factors that limit the bioactivity of curcumin or its analogs include chemical instability, water insolubility, absence of potent and selective target activity, low bioavailability, limited tissue distribution, extensive metabolism, and potential for toxicity.[5]

Toxicity[edit]

Two preliminary clinical studies in cancer patients consuming high doses of curcumin (up to 8 grams per day for 3–4 months) showed no toxicity, though some subjects reported mild nausea or diarrhea.[23]

Alternative medicine[edit]

Some alternative medicine practitioners give curcumin (as turmeric) intravenously as a treatment for a wide range of health problems, leading to a death in California in 2017[24] despite the absence of reliable clinical research and concerns about safety or efficacy.[5][6]